Sample Size

(Always Round Up to the Next Higher Whole Number) z-Score is based on the desired confidence level

1) Estimating Population Proportion p:

a) When
$$\hat{p}$$
 is known, then $n = \frac{z^2 \cdot \hat{p} \cdot \hat{q}}{E^2}$

b) When
$$\hat{p}$$
 is not known, then $n = \frac{0.25 \cdot z^2}{E^2}$

2) Estimating Population Mean μ :

a) When Population is infinite, then
$$n = \left(\frac{z \cdot \sigma}{E}\right)^2$$

b) When population is finite, then
$$n = \frac{N \cdot z^2 \cdot \sigma^2}{(N-1) \cdot E^2 + z^2 \cdot \sigma^2}$$
 where N is the population size.

3) Estimating population variance σ^2 and standard deviation σ :

The procedure for finding sample size for estimating population variance and standard deviation are much more complex. Use the following table to determine the sample size:

Table 6-2 Sample Size for σ^2		Sample Size for σ	
To be 95% confident that s^2 is within	of the value of σ^2 , the sample size n should be at least	To be 95% confident that s is within	of the value of σ , the sample size n should be at least
1%	77,207	1%	19,204
5%	3,148	5%	767
10%	805	10%	191
20%	210	20%	47
30%	97	30%	20
40%	56	40%	11
50%	37	50%	7
To be 99% confident that s ² is within	of the value of σ^2 , the sample size n should be at least	To be 99% confident that s is within	of the value of σ , the sample size n should be at least
1%	133,448	1%	33,218
5%	5,457	5%	1,335
10%	1,401	10%	335
20%	368	20%	~ 84
30%	171	30%	37
40%	100	40%	21
50%	67	50%	13